Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization.

نویسندگان

  • Thomayant Prueksaritanont
  • Raju Subramanian
  • Xiaojun Fang
  • Bennett Ma
  • Yue Qiu
  • Jiunn H Lin
  • Paul G Pearson
  • Thomas A Baillie
چکیده

The active forms of all marketed hydroxymethylglutaryl (HMG)-CoA reductase inhibitors share a common dihydroxy heptanoic or heptenoic acid side chain. In this study, we present evidence for the formation of acyl glucuronide conjugates of the hydroxy acid forms of simvastatin (SVA), atorvastatin (AVA), and cerivastatin (CVA) in rat, dog, and human liver preparations in vitro and for the excretion of the acyl glucuronide of SVA in dog bile and urine. Upon incubation of each statin (SVA, CVA or AVA) with liver microsomal preparations supplemented with UDP-glucuronic acid, two major products were detected. Based on analysis by high-pressure liquid chromatography, UV spectroscopy, and/or liquid chromatography (LC)-mass spectrometry analysis, these metabolites were identified as a glucuronide conjugate of the hydroxy acid form of the statin and the corresponding delta-lactone. By means of an LC-NMR technique, the glucuronide structure was established to be a 1-O-acyl-beta-D-glucuronide conjugate of the statin acid. The formation of statin glucuronide and statin lactone in human liver microsomes exhibited modest intersubject variability (3- to 6-fold; n = 10). Studies with expressed UDP glucuronosyltransferases (UGTs) revealed that both UGT1A1 and UGT1A3 were capable of forming the glucuronide conjugates and the corresponding lactones for all three statins. Kinetic studies of statin glucuronidation and lactonization in liver microsomes revealed marked species differences in intrinsic clearance (CL(int)) values for SVA (but not for AVA or CVA), with the highest CL(int) observed in dogs, followed by rats and humans. Of the statins studied, SVA underwent glucuronidation and lactonization in human liver microsomes, with the lowest CL(int) (0.4 microl/min/mg of protein for SVA versus approximately 3 microl/min/mg of protein for AVA and CVA). Consistent with the present in vitro findings, substantial levels of the glucuronide conjugate (approximately 20% of dose) and the lactone form of SVA [simvastatin (SV); approximately 10% of dose] were detected in bile following i.v. administration of [(14)C]SVA to dogs. The acyl glucuronide conjugate of SVA, upon isolation from an in vitro incubation, underwent spontaneous cyclization to SV. Since the rate of this lactonization was high under conditions of physiological pH, the present results suggest that the statin lactones detected previously in bile and/or plasma following administration of SVA to animals or of AVA or CVA to animals and humans, might originate, at least in part, from the corresponding acyl glucuronide conjugates. Thus, acyl glucuronide formation, which seems to be a common metabolic pathway for the hydroxy acid forms of statins, may play an important, albeit previously unrecognized, role in the conversion of active HMG-CoA reductase inhibitors to their latent delta-lactone forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of fibrates on metabolism of statins in human hepatocytes.

This study investigated the metabolic interaction between fibrates and statin hydroxy acids in human hepatocytes. Gemfibrozil (GFZ) modestly affected the formation of beta-oxidative products and CYP3A4-mediated oxidative metabolites of simvastatin hydroxy acid (SVA) but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of a beta-oxidation product (IC(5...

متن کامل

Cholesterol suppresses antimicrobial effect of statins

Objective(s):Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in ...

متن کامل

Comparison of Elevated Liver Enzymes in Type 2 Diabetic Patients in User and Non-User of Statin

Background: Type-2 diabetes is a risk factor for progressive non-alcoholic fatty liver disease and the majority of diabetic patients have blood lipid disorders, so they take statin drugs. Statins have the adverse effects such as liver dysfunction and increase in liver enzymes. The purpose of this study was to compare the liver enzymes in type 2 diabetic patients who are user and non-user of sta...

متن کامل

Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid.

Gemfibrozil coadministration generally results in plasma statin area under the curve (AUC) increases, ranging from moderate (2- to 3-fold) with simvastatin, lovastatin, and pravastatin to most significant with cerivastatin (5.6-fold). Inhibition of statin glucuronidation has been postulated as a potential mechanism of interaction (Drug Metab Dispos 30:1280-1287, 2002). This study was conducted ...

متن کامل

Intensive statin treatment improves baroreflex sensitivity: another cardioprotective mechanism for statins?

The beneficial effect of statins is likely to result from their ability to reduce cholesterol induced atherogenesis, but novel mechanisms have also been found, such as their anti-inflammatory properties. Another possible mechanism for the benefit of statins follows from the fact that statin treatment increases the bioactivity of vascular nitric oxide (NO). The importance of this relates not onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2002